Penicillin-Binding Protein Typing, Antibiotic Resistance Gene Identification, and Molecular Phylogenetic Analysis of Meropenem-Resistant Streptococcus pneumoniae Serotype 19A-CC3111 Strains in Japan

Author:

Nakano Satoshi,Fujisawa Takao,Ito YutakaORCID,Chang Bin,Matsumura YasufumiORCID,Yamamoto Masaki,Suga Shigeru,Ohnishi Makoto,Nagao Miki

Abstract

ABSTRACT Since the introduction of pneumococcal conjugate vaccines, the prevalence of non-meropenem-susceptible pneumococci has been increasing in Japan. In an earlier study, we demonstrated that multidrug-resistant serotype 15A-ST63 in Japan has a specific pbp1a sequence (pbp1a-13) that could promote meropenem resistance. To trace the origin of pbp1a, we analyzed isolates of serotype 19A-CC3111, which is the most prevalent non-meropenem-susceptible clone in Japan. We analyzed a total of 119 serotype 19A-CC3111 strains recovered in Japan using whole-genome sequencing. Of the 119 isolates, 53 (44.5%) harbored pbp1a-13, indicating that the clone may be the primary reservoir of the pbp1a type and that the pbp1a region may be horizontally transferred between different serotype strains. The single acquisition of pbp1a-13 seemed to cause only penicillin resistance and not multidrug resistance; a combination of penicillin-binding protein (PBP) recombination in the pbp2b and/or pbp2x region(s) with acquisition of pbp1a-13 caused multidrug resistance. Conserved amino acid motif analysis suggested that the pbp1a 370SXXK, pbp2b 448SXN, and pbp2x 337SXXN motifs were the candidates for amino acid substitutions increasing the MICs of meropenem, cefotaxime, and penicillin. We identified a specific clone that was correlated with multidrug resistance, although no correlation was observed between phylogenetic trees generated using core genomes and those generated with only the cps locus. All tested isolates were highly erythromycin resistant, and most harbored mefE within macrolide efflux genetic assembly (MEGA) elements and ermB within Tn917, which was inserted within Tn916 and exhibited a structure identical to that of Tn2017.

Funder

Daiichi-Sankyo (Daiichi Sankyo Company, Limited)

MEXT | Japan Society for the Promotion of Science (JSPS)

Pfizer Inc. | Pfizer Japan

Merck & Co., Inc. | MSD K.K.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3