Affiliation:
1. Division of Infectious Diseases and Hospital Epidemiology Departments of Medicine and Clinical Research, University Hospital Basel, Basel, Switzerland
2. Infectious Disease Modelling Unit, Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
3. University of Basel, Basel, Switzerland
4. Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
Abstract
ABSTRACT
Despite their high potential for drug-drug interactions (DDI), clinical DDI studies of antiretroviral drugs (ARVs) are often lacking, because the full range of potential interactions cannot feasibly or pragmatically be studied, with some high-risk DDI studies also being ethically difficult to undertake. Thus, a robust method to screen and to predict the likelihood of DDIs is required. We developed a method to predict DDIs based on two parameters: the degree of metabolism by specific enzymes, such as CYP3A, and the strength of an inhibitor or inducer. These parameters were derived from existing studies utilizing paradigm substrates, inducers, and inhibitors of CYP3A to assess the predictive performance of this method by verifying predicted magnitudes of changes in drug exposure against clinical DDI studies involving ARVs. The derived parameters were consistent with the FDA classification of sensitive CYP3A substrates and the strength of CYP3A inhibitors and inducers. Characterized DDI magnitudes (
n
= 68) between ARVs and comedications were successfully quantified, meaning 53%, 85%, and 98% of the predictions were within 1.25-fold (0.80 to 1.25), 1.5-fold (0.66 to 1.48), and 2-fold (0.66 to 1.94) of the observed clinical data. In addition, the method identifies CYP3A substrates likely to be highly or, conversely, minimally impacted by CYP3A inhibitors or inducers, thus categorizing the magnitude of DDIs. The developed effective and robust method has the potential to support a more rational identification of dose adjustment to overcome DDIs, being particularly relevant in an HIV setting, given the treatment's complexity, high DDI risk, and limited guidance on the management of DDIs.
Funder
Isaac Dreyfus Foundation
Swiss National Foundation
OPO Foundation
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Pharmacology (medical),Pharmacology
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献