Affiliation:
1. Antibiotic Laboratory, Bacteriology Service, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
2. Consejo Superior de Investigaciones Científicas, Madrid, Spain
Abstract
ABSTRACT
Ampicillin resistance in
Haemophilus influenzae
due to alterations in penicillin-binding proteins (β-lactamase negative ampicillin resistant [BLNAR]) is acquiring increasing clinical and epidemiological importance. BLNAR strains with low ampicillin MICs (0.5 to 4 μg/ml) represent the majority of this population in Europe and the United States, but separating them from susceptible isolates is challenging. To investigate the best method to identify low-BLNAR strains, we studied the antibiotic susceptibilities of 94 clinical isolates of
H. influenzae
by microdilution, Etest, and disk diffusion: 25 had no resistance mechanisms (gBLNAS), 34 had mutations in the
ftsI
gene only (gBLNAR), 20 were β-lactamase producers only (gBLPAR), and 15 showed β-lactamase production and mutations in the
ftsI
gene (gBLPACR). By current CLSI breakpoints, most gBLNAR isolates were ampicillin susceptible by microdilution (76.5%) or by Etest (88.2%). Most gBLNAR strains (79.4%) were nonsusceptible to amoxicillin (the most widely used community antibiotic in the United States and Europe) when tested by microdilution. By Etest, 15% of β-lactamase-positive isolates were nonresistant to ampicillin or amoxicillin. The poorest agreement between Etest and microdilution results was for the gBLPAR isolates (25% for ampicillin, 15% for amoxicillin, and 10% for cefaclor). Low-strength disks of ampicillin and amoxicillin-clavulanic acid poorly identified low-BLNAR isolates and are not recommended as a screening method. We suggest new amoxicillin breakpoints for BLNAR isolates as follows: susceptible, MIC ≤ 0.5 μg/ml (no resistance mechanisms; pharmacokinetic/pharmacodynamic [PK/PD] data favorable); intermediate, MICs = 1 to 2 μg/ml (resistance mechanisms present but PK/PD data favorable), and resistant, MICs ≥ 4 μg/ml (resistance mechanisms present and PK/PD data unfavorable).
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Pharmacology (medical),Pharmacology
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献