Geographical Location Determines the Population Structure in Phyllosphere Microbial Communities of a Salt-Excreting Desert Tree

Author:

Finkel Omri M.1,Burch Adrien Y.2,Lindow Steven E.2,Post Anton F.3,Belkin Shimshon1

Affiliation:

1. Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel

2. Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California

3. Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biology Laboratory, Woods Hole, Massachusetts

Abstract

ABSTRACT The leaf surfaces of Tamarix , a salt-secreting desert tree, harbor a diverse community of microbial epiphytes. This ecosystem presents a unique combination of ecological characteristics and imposes a set of extreme stress conditions. The composition of the microbial community along ecological gradients was studied from analyses of microbial richness and diversity in the phyllosphere of three Tamarix species in the Mediterranean and Dead Sea regions in Israel and in two locations in the United States. Over 200,000 sequences of the 16S V6 and 18S V9 hypervariable regions revealed a diverse community, with 788 bacterial and 64 eukaryotic genera but only one archaeal genus. Both geographic location and tree species were determinants of microbial community structures, with the former being more dominant. Tree leaves of all three species in the Mediterranean region were dominated by Halomonas and Halobacteria , whereas trees from the Dead Sea area were dominated by Actinomycetales and Bacillales . Our findings demonstrate that microbial phyllosphere communities on different Tamarix species are highly similar in the same locale, whereas trees of the same species that grow in different climatic regions host distinct microbial communities.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3