Two-stage induction of the soxRS (superoxide response) regulon of Escherichia coli

Author:

Wu J1,Weiss B1

Affiliation:

1. Department of Pathology, University of Michigan Medical School, Ann Arbor 48109-0602.

Abstract

soxR and soxS are adjacent genes that govern a superoxide response regulon. Previous studies revealed that induction of the regulon is accompanied by increased transcription of soxS, which can activate the target genes. Therefore, induction may occur in two stages: the soxR-dependent activation of soxS, followed by the soxS-dependent induction of other genes. However, the requirement for soxR was unproven because the only existing soxR mutations either were of the regulon-constitutive type or also involved soxS. Therefore, we produced an insertion mutation that was shown by complementation to inactivate only soxR. In confirmation of the two-stage model, soxR was required for the induction by paraquat of the target genes studied (nfo, zwf, and sodA), for paraquat resistance, and for the 47- to 76-fold induction of soxS-lacZ gene fusions. Paraquat did not affect the expression of soxR-lacZ gene fusions. In a soxRS deletion mutant, the regulon was constitutively activated by a runaway soxS+ plasmid. However, a lower-copy-number plasmid failed to activate nfo, zwf, or sodA but did increase the paraquat resistance of a soxRS mutant. Therefore, there is a differential response of the regulon genes to soxS overproduction. A soxR regulon-constitutive mutation was suppressed by a soxR+ plasmid, suggesting a competition between native and activated forms of SoxR. It is proposed that to enhance the sensitivity of the response, the cell minimizes such potential competition by manufacturing only a small amount of this sensor protein, thereby necessitating signal amplification via induction of soxS.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3