Bid-Independent Mitochondrial Activation in Tumor Necrosis Factor Alpha-Induced Apoptosis and Liver Injury

Author:

Chen Xiaoyun1,Ding Wen-Xing1,Ni Hong-Min1,Gao Wentao1,Shi Ying-Hong2,Gambotto Andrea A.3,Fan Jia2,Beg Amer A.4,Yin Xiao-Ming1

Affiliation:

1. Departments of Pathology

2. Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China 200032

3. Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261

4. Department of Interdisciplinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612

Abstract

ABSTRACT The death receptor apoptosis pathway is intimately connected with the mitochondrial apoptosis pathway. Bid is a BH3-only pro-death Bcl-2 family protein and is the major molecule linking the two pathways. Bid-mediated mitochondrial activation occurs early and is responsible for the prompt progress of tumor necrosis factor alpha (TNF-α)-induced apoptosis. However, in both cultured cells and animal models of TNF-α-induced injury, later-phase Bid-independent mitochondrial activation could be demonstrated. Consequently, bid -deficient mice are still susceptible to endotoxin-induced liver injury and mortality. Notably, embryonic hepatocyte apoptosis and lethality caused by TNF-α in the absence of p65relA cannot be rescued by the simultaneous deletion of bid . Further studies indicate that multiple mechanisms including reactive oxygen species, JNK, and permeability transition are critically involved in Bid-independent mitochondrial activation. Inhibition of these events suppresses TNF-α-induced mitochondrial activation and apoptosis in bid -deficient cells. These findings thus indicate that there are at least two sets of mechanisms of mitochondrial activation upon TNF-α stimulation. While the Bid-mediated mechanism is rapid and potent, the Bid-independent mechanism progresses gradually and involves multiple players. The critical involvement of Bid-independent mitochondrial activation in TNF-α-induced apoptosis demands the intervention of TNF-α-mediated tissue injury via multiple avenues.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3