Inositol regulates phosphatidylglycerolphosphate synthase expression in Saccharomyces cerevisiae.

Author:

Greenberg M L,Hubbell S,Lam C

Abstract

The enzyme phosphatidylglycerolphosphate synthase (PGPS; CDPdiacylglycerol-glycerol-3-phosphate 3-phosphatidyltransferase; EC 2.7.8.5) catalyzes the committed step in the synthesis of cardiolipin, a phospholipid found predominantly in the mitochondrial inner membrane. To determine whether PGPS is regulated by cross-pathway control, we analyzed PGPS expression under conditions in which the regulation of general phospholipid synthesis could be examined. The addition of inositol resulted in a three- to fivefold reduction in PGPS expression in wild-type cells in the presence or absence of exogenous choline. The reduction in enzyme activity in response to inositol was seen in minutes, suggesting that inactivation or degradation of the enzyme plays an important role in inositol-mediated repression of PGPS. In cho2 and opi3 mutants, which are blocked in phosphatidylcholine synthesis, inositol-mediated repression of PGPS did not occur unless choline was added to the media. Three previously identified genes that regulate general phospholipid synthesis, INO2, INO4, and OP11, did not affect PGPS expression. Thus, ino2 and ino4 mutants, which are unable to derepress biosynthetic enzymes involved in general phospholipid synthesis, expressed wild-type levels of PGPS activity under derepressing conditions. PGPS expression in the opi1 mutant, which exhibits constitutive synthesis of general phospholipid biosynthetic enzymes, was fully repressed in the presence of inositol and partially repressed even in the absence of inositol. These results demonstrate for the first time that an enzymatic step in cardiolipin synthesis is coordinately controlled with general phospholipid synthesis but that this control is not mediated by the same genetic regulatory circuit.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Inositol depletion regulates phospholipid metabolism and activates stress signaling in HEK293T cells;Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids;2022-06

2. The topology and regulation of cardiolipin biosynthesis and remodeling in yeast;Chemistry and Physics of Lipids;2014-04

3. Comparative lipidomic analysis of S. cerevisiae cells during industrial bioethanol fermentation;Frontiers of Chemical Science and Engineering;2012-12

4. Possible Roles of the Mitochondria in Sulfur Dioxide Production by Lager Yeast;Journal of the American Society of Brewing Chemists;2012-09

5. Influence of Cardiolipin on Lager Beer Dimethyl Sulfide Levels: A Possible Role Involving Mitochondria?;Journal of the American Society of Brewing Chemists;2010-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3