Abstract
The fate of pyrimidine dimers in deoxyribonucleic acid (DNA) newly synthesized by Bacillus subtilis after ultraviolet irradiation was monitored by use of a damage-specific endonuclease that introduces single-strand breaks adjacent to nearly all of the dimer sites. Two Uvr- strains, one defective in the initiation of dimer excision and the other defective in a function required for efficient dimer excision, were found to be similar to their wild-type parent in the kinetics and extent of converting low-molecular-weight DNA newly synthesized after ultraviolet irradiation to high molecular weight. In the Uvr- strains large molecules of newly synthesized DNA remained susceptible to nicking by the damage-specific endonuclease even after extended incubation in growth medium, whereas the enzyme-sensitive sites were rapidly removed from both preexisting and newly synthesized DNA in Uvr+ cells. Our results support the hypothesis that postreplication repair in bacteria includes recombination between dimer-containing parental DNA strands and newly synthesized strands.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献