Abstract
The tumor suppressor protein p53 was first isolated as a simian virus 40 large T antigen-associated protein and subsequently was found to function in cell proliferation control. Tumor-derived mutations in p53 occur predominantly in four evolutionarily conserved regions spanning approximately 50% of the polypeptide. Previously, three of these regions were identified as essential for T-antigen binding. We have examined the interaction between p53 and T antigen by using Escherichia coli-expressed human p53. By a combination of deletion analysis and antibody inhibition studies, a region of p53 that is both necessary and sufficient for binding to T antigen has been localized. This function is contained within residues 94 to 293, which include the four conserved regions affected by mutation in tumors. Residues 94 to 293 of p53 were expressed in both wild-type and mutant forms. T-antigen binding was unaffected by tumor-derived mutations which have been associated with the wild-type conformation of p53 but was greatly reduced by mutations which were previously shown to alter p53 conformation. Our results show that, like T-antigen binding to the Rb tumor suppressor protein, T antigen appears to interact with the domain of p53 that is commonly mutated in human tumors.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献