Multiple SWI6-dependent cis-acting elements control SWI4 transcription through the cell cycle.

Author:

Foster R,Mikesell G E,Breeden L

Abstract

The Saccharomyces cerevisiae SWI4 gene encodes an essential transcription factor which controls gene expression at the G1/S transition of the cell cycle. SWI4 transcription itself is cell cycle regulated, and this periodicity is crucial for the normal cell cycle regulation of HO and at least two of the G1 cyclins. Since the regulation of SWI4 is required for normal cell cycle progression, we have characterized cis- and trans-acting regulators of SWI4 transcription. Deletion analysis of the SWI4 promoter has defined a 140-bp region which is absolutely required for transcription and can function as a cell cycle-regulated upstream activating sequence (UAS). The SWI4 UAS contains three potential MluI cell cycle boxes (MCBs), which are known cell cycle-regulated promoter elements. Deletion of all three MCBs in the SWI4 UAS decreases the level of SWI4 mRNA 10-fold in asynchronous cultures but does not abolish periodicity. These data suggest that MCBs are involved in SWI4 UAS activity, but at least one other periodically regulated element must be present. Since SWI6 is known to bind to MCBs and regulate their activity, the role of SWI6 in SWI4 expression was analyzed. Although the MCBs cannot account for the full cell cycle regulation of SWI4, mutations in SWI6 eliminate the normal periodicity of SWI4 transcription. This suggests that the novel cell cycle-regulated element within the SWI4 promoter is also SWI6 dependent. The constitutive transcription of SWI4 in SWI6 mutant cells occurs at an intermediate level, which indicates that SWI6 is required for the full activation and repression of SWI4 transcription through the cell cycle. It also suggests that there is another pathway which can activate SWI4 transcription in the absence of SWI6. The second activator may also target MCB elements, since SWI4 transcription drops dramatically when they are deleted.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3