The Active Site Is the Least Stable Structure in the Unfolding Pathway of a Multidomain Cold-Adapted α-Amylase

Author:

Siddiqui Khawar S.1,Feller Georges2,D'Amico Salvino2,Gerday Charles2,Giaquinto Laura1,Cavicchioli Ricardo1

Affiliation:

1. School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, 2052 New South Wales, Australia

2. Laboratory of Biochemistry, University of Liege, Institute of Chemistry B6, B-4000 Liege-Sart Tilman, Belgium

Abstract

ABSTRACT The cold-active α-amylase from the Antarctic bacterium Pseudoalteromonas haloplanktis (AHA) is the largest known multidomain enzyme that displays reversible thermal unfolding (around 30°C) according to a two-state mechanism. Transverse urea gradient gel electrophoresis (TUG-GE) from 0 to 6.64 M was performed under various conditions of temperature (3°C to 70°C) and pH (7.5 to 10.4) in the absence or presence of Ca 2+ and/or Tris (competitive inhibitor) to identify possible low-stability domains. Contrary to previous observations by strict thermal unfolding, two transitions were found at low temperature (12°C). Within the duration of the TUG-GE, the structures undergoing the first transition showed slow interconversions between different conformations. By comparing the properties of the native enzyme and the N12R mutant, the active site was shown to be part of the least stable structure in the enzyme. The stability data supported a model of cooperative unfolding of structures forming the active site and independent unfolding of the other more stable protein domains. In light of these findings for AHA, it will be valuable to determine if active-site instability is a general feature of heat-labile enzymes from psychrophiles. Interestingly, the enzyme was also found to refold and rapidly regain activity after being heated at 70°C for 1 h in 6.5 M urea. The study has identified fundamental new properties of AHA and extended our understanding of structure/stability relationships of cold-adapted enzymes.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Extremozymes: Challenges and opportunities on the road to novel enzymes production;Process Biochemistry;2024-08

2. Psychrophilic enzymes: strategies for cold-adaptation;Essays in Biochemistry;2023-08

3. Enhancing the Thermostability of Cellulase from Clostridium thermocellum via Salt Bridge Interactions;Biotechnology and Bioprocess Engineering;2023-07-06

4. Psychrophiles as a novel and promising source of cold-adapted industrial enzymes;The Applied Biology & Chemistry Journal;2023-06-30

5. Psychrophiles;Extremophiles: Diversity, Adaptation and Applications;2023-01-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3