Models for mineralization kinetics with the variables of substrate concentration and population density

Author:

Simkins S,Alexander M

Abstract

The rates of mineralization of [14C]benzoate by an induced population of Pseudomonas sp. were measured at initial substrate concentrations ranging from 10 ng/ml to 100 micrograms/ml. Plots of the radioactivity remaining in the culture were fit by nonlinear regression to six kinetic models derived from the Monod equation. These models incorporate only the variables of substrate concentration and cell density. Plots of the mineralization kinetics in cultures containing low, intermediate, and high initial substrate concentrations were well fit by first-order, integrated Monod, and logarithmic kinetics, respectively. Parameters such as maximum specific growth rate, half-saturation constant, and initial population density divided by yield agreed between cultures to within a factor of 3.4. Benzoate mineralization by microorganisms in acclimated sewage was shown to fit logistic (sigmoidal), Monod, and logarithmic kinetics when the compound was added at initial concentrations of 0.1, 1.0, and 10 micrograms/ml, respectively. The mineralization of 10 micrograms of benzoate per ml in sewage also followed logarithmic kinetics in the absence of protozoa. It is concluded that much of the diversity in shapes of mineralization curves is a result of the interactions of substrate concentration and population density. Nonlinear regression with models incorporating these variables is a valuable means for analysis of microbial mineralization kinetics.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference28 articles.

1. Bard Y. 1974. Nonlinear parameter estimation. Academic Press Inc. New York.

2. Braun M. 1978. Differential equations and their applications. Springer-Verlag Inc. New York.

3. Population growth in micro-organisms limited by food supply;Caperon J.;Ecology,1967

4. Calculation of K,, and Vmax from substrate concentration versus time plot;Counotte G. H. M.;Appl. Environ. Microbiol.,1979

5. Steady state growth of phytoplankton in continuous culture: comparison of internal and external nutrient equations;Goldman J. C.;J. Phycol.,1977

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3