Branched structures in the intracellular DNA of herpes simplex virus type 1

Author:

Severini A1,Scraba D G1,Tyrrell D L1

Affiliation:

1. GlaxoWellcome Heritage Research Insititute, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada.

Abstract

Herpes simplex virus type 1 (HSV-1) replication produces large intracellular DNA molecules that appear to be in a head-to-tail concatemeric arrangement. We have previously suggested (A. Severini, A.R. Morgan, D.R. Tovell, and D.L.J. Tyrrell, Virology 200:428-435, 1994) that these DNA species may have a complex branched structure. We now provide direct evidence for the presence of branches in the high-molecular-weight DNA produced during HSV-1 replication. On neutral agarose two-dimensional gel electrophoresis, a technique that allows separation of branched restriction fragments from linear fragments, intracellular HSV-1 DNA produces arches characteristic of Y junctions (such as replication forks) and X junctions (such as merging replication forks or recombination intermediates). Branched structures were resolved by T7 phage endonuclease I (gene 3 endonuclease), an enzyme that specifically linearizes Y and X structures. Resolution was detected by the disappearance of the arches on two-dimensional gel electrophoresis. Branched structures were also visualized by electron microscopy. Molecules with a single Y junction were observed, as well as large tangles containing two or more consecutive Y junctions. We had previously shown that a restriction enzyme which cuts the HSV-1 genome once does not resolve the large structure of HSV-1 intracellular DNA on pulsed-field gel electrophoresis. We have confirmed that result by using sucrose gradient sedimentation, in which both undigested and digested replicative intermediates sediment to the bottom of the gradient. Taken together, our experiments show that the intracellular HSV-1 DNA is held together in a large complex by frequent branches that create a network of replicating molecules. The fact that most of these branches are Y structures suggests that the network is held together by frequent replication forks and that it resembles the replicative intermediates of bacteriophage T4. Our findings add complexity to the simple model of rolling-circle DNA replication, and they pose interesting questions as to how the network is formed and how it is resolved for packaging into progeny virions.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3