Intratype variation in 12 human papillomavirus types: a worldwide perspective

Author:

Stewart A C1,Eriksson A M1,Manos M M1,Muñoz N1,Bosch F X1,Peto J1,Wheeler C M1

Affiliation:

1. Department of Cell Biology and the New Mexico Cancer Research and Treatment Center, University of New Mexico School of Medicine, Albuquerque 87131, USA.

Abstract

In this study, we have examined intratype human papillomavirus (HPV) sequence variation in a worldwide collection of cervical specimens. Twelve different HPV types including HPV-18, HPV-33, HPV-35, HPV-39, HPV-45, HPV-51, HPV-52, HPV-58, HPV-59, HPV-68 (ME180), MM9/PAP238A (recently designated HPV-73), and a novel partial genomic HPV sequence designated MM4/Wl3B were analyzed in this study. Cervical specimens were collected as part of epidemiological investigations conducted in New Mexico and an international study of invasive cervical cancer (IBSCC). Specimens from several countries including Argentina, Brazil, Bolivia, Benin, Cuba, Colombia, Chile, Germany, Mali, Panama, Paraguay, Spain, Algeria, Uganda, Guinea, Tanzania, Indonesia, Philippines, Thailand, and the United States were evaluated. Specimen DNAs were subjected to amplification with the MY09/11 L1 consensus PCR system. The PCR products were cloned, and an approximately 410-bp region in the L1 open reading frame was sequenced from 146 specimens (approximately 60,000 bp). Within a single HPV type, nucleotide diversity varied between 0.2 and 2.9% (i.e., between any pair of variants) and the majority of nucleotide changes were synonymous (amino acid conserving). These data provide information pertinent to HPV diagnostic probe development and are potentially relevant to future rational vaccine strategies. Similarly, amino acid diversity varied between 0 and 5.1%. Some of these amino acid changes may represent markers of intertype evolutionary relationships. Presuming that HPVs have evolved under the same constraints as their corresponding hosts, the limited genetic diversity observed for all HPVs studied to date may reflect an evolutionary bottleneck occurring in both virus and host populations.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3