Phorbol ester-inducible T-cell-specific expression of variant mouse mammary tumor virus long terminal repeats

Author:

Theunissen H J1,Paardekooper M1,Maduro L J1,Michalides R J1,Nusse R1

Affiliation:

1. Division of Molecular Biology, Antoni van Leeuwenhoekhuis, Netherlands Cancer Institute, Amsterdam.

Abstract

Acquired proviruses of mouse mammary tumor virus (MMTV) in T-cell leukemias of male GR mice have rearrangements in the U3 region of their long terminal repeats (LTR). In contrast to the endogenous nonrearranged MMTV proviruses, these mutated copies are highly expressed in leukemic T cells. To investigate whether the sequence alterations in the LTR are responsible for the high expression of rearranged MMTV proviruses, we made constructs in which normal and variant LTRs drive the bacterial reporter gene chloramphenicol acetyltransferase (CAT). Two different rearranged LTRs were used, one containing a 420-base-pair (bp) deletion (L13) and another carrying a 456-bp deletion plus an 82-bp insertion (L42). These constructs were transfected into murine (GRSL) and human (MOLT-4) T-cell lines that either had or had not been treated with phorbol ester (12-O-tetradecanoylphorbol-13-acetate [TPA]). In GRSL cells, the L13-LTR-CAT construct showed transcriptional activity that was further enhanced by TPA. In MOLT-4 cells, both variant LTRs were active, but only after stimulation with TPA. In contrast, normal(N)-LTR-CAT constructs were not expressed, irrespective of TPA addition. In XC rat fibrosarcoma cells, neither normal nor variant LTRs gave rise to detectable CAT activity, either in the presence or in the absence of TPA, but dexamethasone strongly stimulated CAT activity driven by N and L42 LTRs. The L13 LTR was considerably less active, probably caused by the deletion of the distal part of the glucocorticoid responsive element. We conclude that the LTR rearrangements generate TPA responsiveness and contribute to T-cell-specific expression of MMTV variants.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3