Stability of AML1 (core) site enhancer mutations in T lymphomas induced by attenuated SL3-3 murine leukemia virus mutants

Author:

Amtoft H W1,Sørensen A B1,Bareil C1,Schmidt J1,Luz A1,Pedersen F S1

Affiliation:

1. Department of Molecular and Structural Biology, University of Aarhus, Aarhus C, Denmark.

Abstract

Murine retrovirus SL3-3 is highly T lymphomagenic. Its pathogenic properties are determined by the transcriptional enhancer of the U3 repeat region which shows preferential activity in T cells. Within the U3 repeats, the major determinant of T-cell specificity has been mapped to binding sites for the AML1 transcription factor family (also known as the core binding factor [CBF], polyomavirus enhancer binding protein 2 [PEBP2], and SL3-3 enhancer factor 1 [SEF-1]). SL3-3 viruses with AML1 site mutations have lost a major determinant of T-cell-specific enhancer function but have been found to retain a lymphomagenic potential, although disease induction is slower than for the SL3-3 wild type. To compare the specificities and mechanisms of disease induction of wild-type and mutant viruses, we have examined lymphomas induced by mutant viruses harboring transversions of three consecutive base pairs critical to AML1 site function (B. Hallberg, J. Schmidt, A. Luz, F. S. Pedersen, and T. Grundström. J. Virol. 65:4177-4181, 1991). Our results show that the mutated AML1 sites are genetically stable during lymphomagenesis and that ecotropic provirus numbers in DNA of tumors induced by wild-type and mutant viruses fall within the same range. Moreover, proviruses were found to be integrated at the c-myc locus in similar proportions of wild-type and mutant SL3-3-induced tumors, and the mutated AML1 sites of proviruses at c-myc are unaltered. In some cases, however, including one c-myc-integrated provirus, a single-base pair change was detected in a second, weaker AML1 binding site. By DNA rearrangement analysis of the T-cell receptor beta-locus, tumors induced by the AML1 site mutants are found to be of the T-cell type. Thus, although the AML1 site mutants have weakened T-cell-specific enhancers they are T-lymphomagenic, and wild-type- and mutant-virus-induced tumor DNAs are similar with respect to the number of overall ecotropic and c-myc-integrated clonal proviruses. The SL3-3 wild-type and AML1 site mutant viruses may therefore induce disease by similar mechanisms.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference42 articles.

1. Isolation of PEBP2aB cDNA representing the mouse homolog of human acute myeloid leukemia gene, AML1;Bae S. C.;Oncogene,1993

2. PEBP2~B/mouse AML1 consists of multiple isoforms that possess differential transactivation potentials;Bae S.;Mol. Cell. Biol.,1994

3. Friend virus-induced erythroleukemia and the multistage nature of cancer;Ben-David Y.;Cell,1991

4. Identification of the SL3-3 virus enhancer core as a T-lymphoma cell-specific element;Boral A. L.;J. Virol.,1989

5. A 3~ end fragment encompassing the transcriptional enhancers of nondefective Friend virus confers erythroleukemogenicity on Moloney leukemia virus;Chatis P. A.;J. Virol.,1984

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3