Reovirus Induces and Benefits from an Integrated Cellular Stress Response

Author:

Smith Jennifer A.1,Schmechel Stephen C.2,Raghavan Arvind1,Abelson Michelle1,Reilly Cavan3,Katze Michael G.4,Kaufman Randal J.5,Bohjanen Paul R.16,Schiff Leslie A.1

Affiliation:

1. Department of Microbiology

2. Departments of Pathology

3. Division of Biostatistics

4. Microbiology, University of Washington Medical School, Seattle, Washington 98195

5. Howard Hughes Medical Institute and Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, Michigan 48109

6. Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455

Abstract

ABSTRACT Following infection with most reovirus strains, viral protein synthesis is robust, even when cellular translation is inhibited. To gain further insight into pathways that regulate translation in reovirus-infected cells, we performed a comparative microarray analysis of cellular gene expression following infection with two strains of reovirus that inhibit host translation (clone 8 and clone 87) and one strain that does not (Dearing). Infection with clone 8 and clone 87 significantly increased the expression of cellular genes characteristic of stress responses, including the integrated stress response. Infection with these same strains decreased transcript and protein levels of P58 IPK , the cellular inhibitor of the eukaryotic initiation factor 2α (eIF2α) kinases PKR and PERK. Since infection with host shutoff-inducing strains of reovirus impacted cellular pathways that control eIF2α phosphorylation and unphosphorylated eIF2α is required for translation initiation, we examined reovirus replication in a variety of cell lines with mutations that impact eIF2α phosphorylation. Our results revealed that reovirus replication is more efficient in the presence of eIF2α kinases and phosphorylatable eIF2α. When eIF2α is phosphorylated, it promotes the synthesis of ATF4, a transcription factor that controls cellular recovery from stress. We found that the presence of this transcription factor increased reovirus yields 10- to 100-fold. eIF2α phosphorylation also led to the formation of stress granules in reovirus-infected cells. Based on these results, we hypothesize that eIF2α phosphorylation facilitates reovirus replication in two ways—first, by inducing ATF4 synthesis, and second, by creating an environment that places abundant reovirus transcripts at a competitive advantage for limited translational components.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 131 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3