Identification of an Aggregative Adhesion Fimbria (AAF) Type III-Encoding Operon in Enteroaggregative Escherichia coli as a Sensitive Probe for Detecting the AAF-Encoding Operon Family

Author:

Bernier Christine1,Gounon Pierre2,Le Bouguénec Chantal1

Affiliation:

1. Unité de Pathogénie Bactérienne des Muqueuses, Groupe d'Etude des Infections Diarrhéiques (GEID)

2. Station Centrale de Microscopie Electronique, Institut Pasteur, 75724 Paris Cedex 15, France

Abstract

ABSTRACT Enteroaggregative Escherichia coli (EAEC) is recognized as an emerging cause of diarrhea in children and adults worldwide, and recent studies have implicated EAEC in persistent diarrhea in patients infected with human immunodeficiency virus (HIV). In this study, we identified aggregative adhesion fimbria type III (AAF-III) in isolate 55989, a typical EAEC strain. Analysis of the sequence of the plasmid-borne agg-3 gene cluster encoding AAF-III showed this cluster to be closely related to the agg and aaf operons and to the afa operons carried by diffusely adherent pathogenic E. coli . We investigated the adhesion properties of a collection of 25 EAEC strains isolated from HIV-infected patients presenting with persistent diarrhea. We found that a minority of strains (36%) carried sequences similar to those of the agg and aaf operons, which encode AAF-I and AAF-II, respectively. We developed PCR assays specific for the agg-3 operon. In our collection, the frequency of AAF-III strains was similar (12%) to that of AAF-I strains (16%) but higher than that of AAF-II isolates (0%). Differences between EAEC strains in terms of the virulence factors present render detection of these strains difficult with the available DNA probes. Based on comparison of the agg , aaf , and agg-3 operons, we defined an AAF probe internal to the adhesion gene clusters and demonstrated that it was efficient for the identification of EAEC strains. We investigated 32 EAEC isolates, of which only 34.4% were detected with the classical CVD432 probe (detecting pAA virulence plasmids) whereas 65.6% were detected with the AAF probe.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3