Broad Neutralization of Human Immunodeficiency Virus Type 1 Mediated by Plasma Antibodies against the gp41 Membrane Proximal External Region

Author:

Gray Elin S.1,Madiga Maphuti C.1,Moore Penny L.1,Mlisana Koleka2,Abdool Karim Salim S.2,Binley James M.3,Shaw George M.4,Mascola John R.5,Morris Lynn1

Affiliation:

1. AIDS Virus Research Unit, National Institute for Communicable Diseases, Johannesburg, South Africa

2. Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa

3. Torrey Pines Institute for Molecular Studies, San Diego, California 92121

4. University of Alabama at Birmingham, Birmingham, Alabama 35294

5. Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892

Abstract

ABSTRACT We identified three cross-neutralizing plasma samples with high-titer anti-membrane proximal external region (MPER) peptide binding antibodies from among 156 chronically human immunodeficiency virus type 1-infected individuals. In order to establish if these antibodies were directly responsible for the observed neutralization breadth, we used MPER-coated magnetic beads to deplete plasmas of these specific antibodies. Depletion of anti-MPER antibodies from BB34, CAP206, and SAC21 resulted in 77%, 68%, and 46% decreases, respectively, in the number of viruses neutralized. Antibodies eluted from the beads showed neutralization profiles similar to those of the original plasmas, with potencies comparable to those of the known anti-MPER monoclonal antibodies (MAbs), 4E10, 2F5, and Z13e1. The anti-MPER neutralizing antibodies in BB34 were present in the immunoglobulin G3 subclass-enriched fraction. Alanine scanning of the MPER showed that the antibodies from these three plasmas had specificities distinct from those of the known MAbs, requiring one to three crucial residues at positions 670, 673, and 674. These data demonstrate the existence of MPER-specific cross-neutralizing antibodies in plasma, although the ability to elicit such potent antiviral antibodies during natural infection appears to be rare. Nevertheless, the identification of three novel antibody specificities within the MPER supports its further study as a promising target for vaccine design.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3