Rational design of a flavoenzyme for aerobic nicotine catabolism

Author:

Hu Haiyang1ORCID,Xu Zhaoyong1,Zhang Zhiyao2,Song Peizhi1,Stull Frederick2,Xu Ping1,Tang Hongzhi1ORCID

Affiliation:

1. State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China

2. Department of Chemistry, Western Michigan University, Kalamazoo, Michigan, USA

Abstract

ABSTRACT Enzymatic therapy with nicotine-degrading enzyme is a new strategy in treating nicotine addiction, which can reduce nicotine concentrations and weaken withdrawal in the rat model. However, when O 2 is used as the electron acceptor, no satisfactory performance has been achieved with one of the most commonly studied and efficient nicotine-catabolizing enzymes, NicA2. To obtain more efficient nicotine-degrading enzyme, we rationally designed and engineered a flavoenzyme Pnao, which shares high structural similarity with NicA2 (RMSD = 1.143 Å) and efficiently catalyze pseudooxynicotine into 3-succinoyl-semialdehyde pyridine using O 2 . Through amino acid alterations with NicA2, five Pnao mutants were generated, which can degrade nicotine in Tris-HCl buffer and retain catabolic activity on its natural substrate. Nicotine-1′- N -oxide was identified as one of the reaction products. Four of the derivative mutants showed activity in rat serum and Trp220 and Asn224 were found critical for enzyme specificity. Our findings offer a novel avenue for research into aerobic nicotine catabolism and provide a promising method of generating additional nicotine-catalytic enzymes. IMPORTANCE Nicotine, the main active substance in tobacco, results in cigarette addiction and various diseases. There have been some attempts at using nicotine oxidoreductase, NicA2, as a therapeutic for nicotine cessation. However, it uses cytochrome c as it is electron acceptor, which is impractical for therapeutic use compared with using O2 as an oxidant. Thus, amino acid alteration was performed on Pnao using NicA2 as model. Five of the mutants generated degraded nicotine at a rate similar to NicA2, and one of the catabolic compounds was identified as nicotine-1′-N-oxide. Our research highlights a new direction in developing enzymes that efficiently catabolize nicotine without co-enzymes and suggests that structure-similar human original MAOA (or B) may assist with nicotine cessation after being engineered.

Funder

MOST | National Key Research and Development Program of China

MOST | National Natural Science Foundation of China

the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University

HHS | National Institutes of Health

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3