Herpesviral ICP0 Protein Promotes Two Waves of Heterochromatin Removal on an Early Viral Promoter during Lytic Infection

Author:

Lee Jennifer S.12,Raja Priya1,Knipe David M.12

Affiliation:

1. Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA

2. Program in Virology, Harvard Medical School, Boston, Massachusetts, USA

Abstract

ABSTRACT Herpesviruses must contend with host cell epigenetic silencing responses acting on their genomes upon entry into the host cell nucleus. In this study, we confirmed that unchromatinized herpes simplex virus 1 (HSV-1) genomes enter primary human foreskin fibroblasts and are rapidly subjected to assembly of nucleosomes and association with repressive heterochromatin modifications such as histone 3 (H3) lysine 9-trimethylation (H3K9me3) and lysine 27-trimethylation (H3K27me3) during the first 1 to 2 h postinfection. Kinetic analysis of the modulation of nucleosomes and heterochromatin modifications over the course of lytic infection demonstrates a progressive removal that coincided with initiation of viral gene expression. We obtained evidence for three phases of heterochromatin removal from an early gene promoter: an initial removal of histones and heterochromatin not dependent on ICP0, a second ICP0-dependent round of removal of H3K9me3 that is independent of viral DNA synthesis, and a third phase of H3K27me3 removal that is dependent on ICP0 and viral DNA synthesis. The presence of ICP0 in transfected cells is also sufficient to promote removal of histones and H3K9me3 modifications of cotransfected genes. Overall, these results show that ICP0 promotes histone removal, a reduction of H3K9me3 modifications, and a later indirect reduction of H3K27me3 modifications following viral early gene expression and DNA synthesis. Therefore, HSV ICP0 promotes the reversal of host epigenetic silencing mechanisms by several mechanisms. IMPORTANCE The human pathogen herpes simplex virus (HSV) has evolved multiple strategies to counteract host-mediated epigenetic silencing during productive infection. However, the mechanisms by which viral and cellular effectors contribute to these processes are not well defined. The results from this study demonstrate that HSV counteracts host epigenetic repression in a dynamic stepwise process to remove histone 3 (H3) and subsequently target specific heterochromatin modifications in two distinct waves. This provides the first evidence of a stepwise reversal of host epigenetic silencing by viral proteins. This work also suggests that targets capable of disrupting the kinetics of epigenetic regulation could serve as potential antiviral therapeutic agents.

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3