Biased eviction of variant histone H3 nucleosomes triggers biofilm growth in Candida albicans

Author:

Brahma Priya1ORCID,Aggarwal Rashi1ORCID,Sanyal Kaustuv1ORCID

Affiliation:

1. Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Bangalore, Karnataka, India

Abstract

ABSTRACT Candida albicans is an opportunistic human pathogen that colonizes the gastrointestinal and genitourinary tracts of healthy individuals. C. albicans yeast cells can switch to filamentous forms. On biotic and abiotic surfaces, the planktonic free-floating yeast cells often form biofilms, a multi-drug-resistant three-dimensional community of yeast and filamentous cells. While alterations in gene expression patterns during planktonic to biofilm growth transitions in C. albicans have been studied, the underlying molecular mechanisms largely remain unexplored. Previously, we identified a histone H3 variant (H3V CTG ), which acts as a negative regulator of biofilm growth in C. albicans . In the current study, we performed genome-wide profiling of H3V CTG nucleosomes in C. albicans planktonic cells and found them to be enriched at promoter regions. In planktonic cells, H3V CTG -enriched regions are mostly devoid of histone H3 post-translational modifications that allow active transcription, thus strengthening the role of H3V CTG as a negative regulator of biofilm formation. By combining genome-wide transcriptional alterations, nucleosome positioning (MNase-seq), and DNA accessibility (ATAC-seq) assays, we show a significant reduction in the total number of nucleosomes in biofilm cells as compared to planktonic cells indicating a more open chromatin state during biofilm growth. Finally, we propose that H3V CTG -nucleosome eviction at promoters of biofilm-relevant genes in biofilm-grown cells contributes to achieve the open chromatin state by facilitating easy promoter access of master regulators (activators and repressors) for modulation of gene expression observed during growth phase transitions. IMPORTANCE Candida albicans lives as a commensal in most healthy humans but can cause superficial skin infections to life-threatening systemic infections. C. albicans also forms biofilms on biotic and abiotic surfaces. Biofilm cells are difficult to treat and highly resistant to antifungals. A specific set of genes is differentially regulated in biofilm cells as compared to free-floating planktonic cells of C. albicans . In this study, we addressed how a variant histone H3V CTG , a previously identified negative regulator of biofilm formation, modulates gene expression changes. By providing compelling evidence, we show that biased eviction of H3V CTG nucleosomes at the promoters of biofilm-relevant genes facilitates the accessibility of both transcription activators and repressors to modulate gene expression. Our study is a comprehensive investigation of genome-wide nucleosome occupancy in both planktonic and biofilm states, which reveals transition to an open chromatin landscape during biofilm mode of growth in C. albicans , a medically relevant pathogen.

Funder

Council of Scientific and Industrial Research, India

Jawaharlal Nehru Centre for Advanced Scientific Research

JC Bose Fellowship

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3