Infection of eucaryotic cells by helper-independent recombinant adenoviruses: early region 1 is not obligatory for integration of viral DNA

Author:

Van Doren K,Hanahan D,Gluzman Y

Abstract

Recombinant viral genomes carrying a selectable drug resistance marker have been constructed by insertion of a hybrid gene for neomycin resistance into the helper-independent adenovirus vector, delta E1/X. The hybrid gene consists of sequences coding for the aminoglycoside 3'-phosphotransferase II from Tn5, under the control of the simian virus 40 early promoter, and renders mammalian cells resistant to the neomycin analog, G-418. Most of adenovirus early region 1 is deleted from delta E1/X (nucleotides 455 to 3330), and recombinant viral genomes carry the hybrid gene in its place. The large and small XbaI fragments of delta E1/X were ligated to the hybrid gene, and the mixture was transfected into 293 cells. Single plaques were isolated and subsequently passaged in 293 cells to produce virus stocks. The recombinant viruses efficiently rendered cultured rat (Rat2) and simian (CV1) cells resistant to G-418. Cloned cell lines selected for resistance to G-418 contained viral DNA integrated into the host cell genome, demonstrating that early region 1 is not essential for integration of the viral genome. Southern transfer experiments revealed that (i) the sites of integration in the host genome were not unique; (ii) in general, transformed CV1 cell lines contained single-copy, full-length viral genomes, colinear with the infecting virus; (iii) transformed Rat2 cell lines generally contained one to several copies of full-length viral genomes integrated colinearly with the infecting viral DNA; and (iv) three of these five lines of transformed Rat2 cell lines contained tandemly repeated viral DNA sequences in which the right and left ends of the viral genome were joined to each other.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 157 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3