X-Ray Crystallographic and Mutational Studies of Fluoroacetate Dehalogenase from Burkholderia sp. Strain FA1

Author:

Jitsumori Keiji1,Omi Rie12,Kurihara Tatsuo1,Kurata Atsushi1,Mihara Hisaaki1,Miyahara Ikuko2,Hirotsu Ken2,Esaki Nobuyoshi1

Affiliation:

1. Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan

2. Department of Chemistry, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-6111, Japan

Abstract

ABSTRACT Fluoroacetate dehalogenase catalyzes the hydrolytic defluorination of fluoroacetate to produce glycolate. The enzyme is unique in that it catalyzes the cleavage of a carbon-fluorine bond of an aliphatic compound: the bond energy of the carbon-fluorine bond is among the highest found in natural products. The enzyme also acts on chloroacetate, although much less efficiently. We here determined the X-ray crystal structure of the enzyme from Burkholderia sp. strain FA1 as the first experimentally determined three-dimensional structure of fluoroacetate dehalogenase. The enzyme belongs to the α/β hydrolase superfamily and exists as a homodimer. Each subunit consists of core and cap domains. The catalytic triad, Asp104-His271-Asp128, of which Asp104 serves as the catalytic nucleophile, was found in the core domain at the domain interface. The active site was composed of Phe34, Asp104, Arg105, Arg108, Asp128, His271, and Phe272 of the core domain and Tyr147, His149, Trp150, and Tyr212 of the cap domain. An electron density peak corresponding to a chloride ion was found in the vicinity of the N ε1 atom of Trp150 and the N ε2 atom of His149, suggesting that these are the halide ion acceptors. Site-directed replacement of each of the active-site residues, except for Trp150, by Ala caused the total loss of the activity toward fluoroacetate and chloroacetate, whereas the replacement of Trp150 caused the loss of the activity only toward fluoroacetate. An interaction between Trp150 and the fluorine atom is probably an absolute requirement for the reduction of the activation energy for the cleavage of the carbon-fluorine bond.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference44 articles.

1. Argiriadi, M. A., C. Morisseau, B. D. Hammock, and D. W. Christianson. 1999. Detoxification of environmental mutagens and carcinogens: structure, mechanism, and evolution of liver epoxide hydrolase. Proc. Natl. Acad. Sci. USA 96 : 10637-10642.

2. Baron, M. L., C. M. Bothroyd, G. I. Rogers, A. Staffa, and I. D. Rae. 1987. Detection and measurement of fluoroacetate in plant extracts by 19F NMR. Phytochemistry 26 : 2293-2295.

3. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding

4. Brunger, A. T., P. D. Adams, G. M. Clore, W. L. DeLano, P. Gros, R. W. Grosse-Kunstleve, J. S. Jiang, J. Kuszewski, M. Nilges, N. S. Pannu, R. J. Read, L. M. Rice, T. Simonson, and G. L. Warren. 1998. Crystallography & NMR System: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54 : 905-921.

5. CCP4. 1994. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50 : 2760-2763.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3