Affiliation:
1. Unité des Agents Antibactériens, Centre National de la Recherche Scientifique, Institut Pasteur, Paris, France.
Abstract
Regulation of VanA- and VanB-type glycopeptide resistance in enterococci is mediated by related two-component regulatory systems (VanR-VanS and VanRB-VanSB). The transglycosylase inhibitors vancomycin, teicoplanin, and moenomycin induced synthesis of the VanX D,D-dipeptidase in a VanA-type Enterococcus faecalis harboring transposon Tn1546. Inhibitors of reactions immediately preceding (ramoplanin) or following (penicillin G and bacitracin) transglycosylation were not inducers. These results identify accumulation of membrane-bound lipid intermediate II as a potential signal for induction of VanA-type resistance. In E.faecalis BM4281 harboring a wild vanB genetic element, D,D-dipeptidase synthesis was only inducible by vancomycin. Induction of the production of the VanB ligase by vancomycin was required for growth of a vancomycin-dependent derivative of BM4281, since introduction of a plasmid coding for constitutive synthesis of the VanA ligase eliminated the requirement of glycopeptide for growth. Both vancomycin and teicoplanin were able to induce D,D-dipeptidase synthesis in BM4281 derivatives that were vancomycin and teicoplanin resistant or vancomycin and teicoplanin dependent. Acquisition of teicoplanin resistance in the latter types of strains was due to alteration in induction specificity associated with an increase in the sensitivity of the regulatory system to vancomycin. Thus, the wild VanRB-VanSB system is unable or not sensitive enough to sense teicoplanin, although mutations can lead to recognition of this antibiotic.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Pharmacology (medical),Pharmacology
Cited by
91 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献