Comparison of Loss of Serum Resistance by Defined Lipopolysaccharide Mutants and an Acapsular Mutant of Uropathogenic Escherichia coli O75:K5

Author:

Burns Stacy M.1,Hull Sheila I.1

Affiliation:

1. Department of Microbiology and Immunology, Baylor College of Medicine, Houston, Texas 77030

Abstract

ABSTRACT In order to determine the importance of the O75 O antigen versus the K5 capsular antigen and the bimodal distribution of lipopolysaccharides (LPSs) in protection from complement-mediated lysis, mutants were made by insertion of a cat or an aphA gene in or in place of genes necessary for the synthesis of LPS and/or the K antigen of an O75 + K5 + uropathogenic Escherichia coli strain, GR-12. Mutations were made in the following genes: the rfbD gene (required for the synthesis of TDP-rhamnose), the rfbKM genes (necessary for the synthesis of GDP-mannose), the rol gene (regulating O-antigen length), the kfiC gene (encoding a putative glycosyltransferase), and the kfiC-rfbD genes. The resulting phenotypes were rough (O75 ), core plus one partial O-antigen subunit, random distribution of O-antigen chain lengths, acapsular (K5 ), and O75 K5 , respectively. All five mutants and GR-12 were analyzed for survival in 80% serum. The GR-12 parent was resistant, exhibiting a 500% increase in numbers. The rol , rfbKM , rfbD , and kfiC-rfbD mutants were sensitive, experiencing 99%, 99.9%, 99.9%, and at least 99.999% killing, respectively, in the first hour. The kfiC mutant, however, increased in numbers in the first hour but experienced delayed sensitivity, decreasing in viability by 80% in the third hour. Single mutants were complemented with the wild-type gene in trans , showing restoration of the wild-type phenotype and serum resistance. Therefore, the O75 antigen is more important for survival in serum than the K5 antigen, and regulation of the O75 O-antigen chain length is crucial for protection of the bacteria from complement-mediated lysis.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3