Transcriptional Induction of the Pseudomonas aeruginosa Type III Secretion System by Low Ca 2+ and Host Cell Contact Proceeds through Two Distinct Signaling Pathways

Author:

Dasgupta Nandini1,Ashare Alix2,Hunninghake Gary W.23,Yahr Timothy L.1

Affiliation:

1. Departments of Microbiology

2. Internal Medicine, University of Iowa, Iowa City, Iowa 52242

3. the Veterans' Administration Medical Center, Iowa City, Iowa

Abstract

ABSTRACT The opportunistic pathogen Pseudomonas aeruginosa utilizes a type III secretion system (T3SS) to intoxicate eukaryotic host cells. Transcription of the T3SS is induced under calcium-limited growth conditions or following intimate contact of P. aeruginosa with host cells. In the present study, we demonstrate that expression of the T3SS is controlled by two distinct regulatory mechanisms and that these mechanisms are differentially activated in a host cell-dependent manner. The first mechanism is dependent upon ExsC, a regulatory protein that couples transcription of the T3SS to the activity of the type III secretion machinery. ExsC is essential for induction of the T3SS under low-calcium-growth conditions and for T3SS-dependent cytotoxicity towards social amoebae, insect cells, and erythrocytes. The second regulatory mechanism functions independently of ExsC and is sufficient to elicit T3SS-dependent cytotoxicity towards certain types of mammalian cells. Although this second pathway (ExsC independent) is sufficient, an exsC mutant demonstrates a lag in the induction of cytotoxicity towards Chinese hamster ovary cells and is attenuated for virulence in a mouse pneumonia model. We propose that the ExsC-dependent pathway is required for full cytotoxicity towards all host cell types tested whereas the ExsC-independent pathway may represent an adaptation that allows P. aeruginosa to increase expression of the T3SS in response to specific types of mammalian cells.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3