Protective Role of Akt2 in Salmonella enterica Serovar Typhimurium-Induced Gastroenterocolitis

Author:

Kum Winnie W. S.,Lo Bernard C.,Yu Hong B.,Finlay B. Brett

Abstract

ABSTRACTTheSalmonellaeffector protein SopB has previously been shown to induce activation of Akt and protect epithelial cells from apoptosisin vitro. To characterize the role of Akt2 in host defense againstSalmonella entericaserovar Typhimurium infection, wild-type (WT) mice and mice lacking Akt2 (Akt2 knockout [KO] mice) were infected using aSalmonellaacute gastroenteritis model. Infected Akt2 KO mice showed a more pronounced morbidity and mortality associated with higher bacterial loads in the intestines and elevated levels of proinflammatory cytokines, including tumor necrosis factor alpha (TNF-α), gamma interferon (IFN-γ), and MCP-1, in the colons at 1 day postinfection compared to those shown in WT mice. Histopathological assessment and immunohistochemical analysis of cecal sections at 1 day postinfection revealed more severe inflammation and higher levels of neutrophil infiltration in the ceca of Akt2 KO mice. Flow cytometry analysis further confirmed an increase in the recruitment of Gr-1+CD11b+neutrophils and F4/80+CD11b+macrophages in the intestines of infected Akt2 KO mice. Additionally, enhanced levels of annexin V+and terminal transferase dUTP nick end labeling-positive (TUNEL+) apoptotic cells in the intestines of infected Akt2 KO mice were also observed, indicating that Akt2 plays an essential role in protection against apoptosis. Finally, the differences in bacterial loads and cecal inflammation in WT and Akt2 KO mice infected with WTSalmonellawere abolished when these mice were infected with thesopBdeletion mutant, indicating that SopB may play a role in protecting the mice fromSalmonellainfection through the activation of Akt2. These data demonstrate a definitive phenotypic abnormality in the innate response in mice lacking Akt2, underscoring the important protective role of Akt2 inSalmonellainfection.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3