The Small RNA GcvB Promotes Mutagenic Break Repair by Opposing the Membrane Stress Response

Author:

Barreto Brittany12,Rogers Elizabeth1342,Xia Jun1342,Frisch Ryan L.1342,Richters Megan1342,Fitzgerald Devon M.1342,Rosenberg Susan M.1342

Affiliation:

1. Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA

2. Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA

3. Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA

4. Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA

Abstract

ABSTRACT Microbes and human cells possess mechanisms of mutagenesis activated by stress responses. Stress-inducible mutagenesis mechanisms may provide important models for mutagenesis that drives host-pathogen interactions, antibiotic resistance, and possibly much of evolution generally. In Escherichia coli , repair of DNA double-strand breaks is switched to a mutagenic mode, using error-prone DNA polymerases, via the SOS DNA damage and general (σ S ) stress responses. We investigated small RNA (sRNA) clients of Hfq, an RNA chaperone that promotes mutagenic break repair (MBR), and found that GcvB promotes MBR by allowing a robust σ S response, achieved via opposing the membrane stress (σ E ) response. Cells that lack gcvB were MBR deficient and displayed reduced σ S -dependent transcription but not reduced σ S protein levels. The defects in MBR and σ S -dependent transcription in Δ gcvB cells were alleviated by artificially increasing σ S levels, implying that GcvB promotes mutagenesis by allowing a normal σ S response. Δ gcvB cells were highly induced for the σ E response, and blocking σ E response induction restored both mutagenesis and σ S -promoted transcription. We suggest that GcvB may promote the σ S response and mutagenesis indirectly, by promoting membrane integrity, which keeps σ E levels lower. At high levels, σ E might outcompete σ S for binding RNA polymerase and so reduce the σ S response and mutagenesis. The data show the delicate balance of stress response modulation of mutagenesis. IMPORTANCE Mutagenesis mechanisms upregulated by stress responses promote de novo antibiotic resistance and cross-resistance in bacteria, antifungal drug resistance in yeasts, and genome instability in cancer cells under hypoxic stress. This paper describes the role of a small RNA (sRNA) in promoting a stress-inducible-mutagenesis mechanism, mutagenic DNA break repair in Escherichia coli . The roles of many sRNAs in E. coli remain unknown. This study shows that Δ gcvB cells, which lack the GcvB sRNA, display a hyperactivated membrane stress response and reduced general stress response, possibly because of sigma factor competition for RNA polymerase. This results in a mutagenic break repair defect. The data illuminate a function of GcvB sRNA in opposing the membrane stress response, and thus indirectly upregulating mutagenesis.

Funder

Cancer Research Institute of Texas

HHS | National Institutes of Health

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3