Bacterioopsin-Mediated Regulation of Bacterioruberin Biosynthesis in Halobacterium salinarum

Author:

Dummer Antoinette M.1,Bonsall Jessica C.1,Cihla Jacob B.1,Lawry Stephanie M.1,Johnson Gabriela C.1,Peck Ronald F.1

Affiliation:

1. Department of Biology, Lawrence University, Appleton, Wisconsin 54911

Abstract

ABSTRACT Integral membrane protein complexes consisting of proteins and small molecules that act as cofactors have important functions in all organisms. To form functional complexes, cofactor biosynthesis must be coordinated with the production of corresponding apoproteins. To examine this coordination, we study bacteriorhodopsin (BR), a light-induced proton pump in the halophilic archaeon Halobacterium salinarum . This complex consists of a retinal cofactor and bacterioopsin (BO), the BR apoprotein. To examine possible novel regulatory mechanisms linking BO and retinal biosynthesis, we deleted bop , the gene that encodes BO. bop deletion resulted in a dramatic increase of bacterioruberins, carotenoid molecules that share biosynthetic precursors with retinal. Additional studies revealed that bacterioruberins accumulate in the absence of BO regardless of the presence of retinal or BR, suggesting that BO inhibits bacterioruberin biosynthesis to increase the availability of carotenoid precursors for retinal biosynthesis. To further examine this potential regulatory mechanism, we characterized an enzyme, encoded by the lye gene, that catalyzes bacterioruberin biosynthesis. BO-mediated inhibition of bacterioruberin synthesis appears to be specific to the H. salinarum lye -encoded enzyme, as expression of a lye homolog from Haloferax volcanii , a related archaeon that synthesizes bacterioruberins but lacks opsins, resulted in bacterioruberin synthesis that was not reduced in the presence of BO. Our results provide evidence for a novel regulatory mechanism in which biosynthesis of a cofactor is promoted by apoprotein-mediated inhibition of an alternate biochemical pathway. Specifically, BO accumulation promotes retinal production by inhibiting bacterioruberin biosynthesis.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3