Nitrogen fixation and ammonia switch-off in the photosynthetic bacterium Rhodopseudomonas viridis

Author:

Howard K S,Hales B J,Socolofsky M D

Abstract

Rhodopseudomonas viridis ATCC 19567 grows by means of nitrogen fixation in yeast extract-N2 or nitrogen-free medium when sparged with 5% CO2 and 95% N2 in the light at 30 degrees C. Acetylene reduction assays for nitrogenase activity revealed an initially high level of activity during early-logarithmic growth phase, a lower plateau during mid- to late-logarithmic phase, and a dramatic reduction of activity at the beginning of the stationary phase. When viewed by electron microscopy, nitrogen-fixing R. viridis cells appeared to be morphologically and ultrastructurally similar to cells grown on nitrogen-rich media. Whole cells prepared under reducing conditions in the dark for electron spin resonance spectroscopy yielded g4.26 and g3.66 signals characteristic of the molybdenum-iron protein of nitrogenase. During growth on N2 in the absence of fixed-nitrogen sources, the nitrogenase activity of R. viridis measured by acetylene reduction stopped rapidly in response to the addition of NH4Cl as has been observed in other Rhodospirillaceae. However, unlike the nitrogenase of Rhodopseudomonas palustris or Rhodospirillum rubrum, which recover from this treatment within 40 min, the nitrogenase activity of R. viridis was not detectable for nearly 4 h.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3