Abstract
Heating competent Azotobacter vinelandii at 37 or 42 degrees C resulted in a total loss of competence with no loss of viability. The transformation process was relatively insensitive to heating at either temperature once DNase-resistant DNA binding was nearly complete. Although competent and 42 degrees C-treated cells bound equivalent amounts of [32P]DNA in a DNase-resistant state, no donor DNA marker (nif) or radioactivity was detected in the envelope-free cell lysate of heated cells, suggesting that DNA transport across the cell envelope was a heat-sensitive event. Competence was reacquired in a 42 degrees C-treated culture after 2 h of incubation at 30 degrees C by a process which required RNA and protein syntheses. The release of a surface glycoprotein, required for competence, from cells treated at 42 degrees C occurred in an insufficient amount to account for the total loss of competence. Recovery of competence in 42 degrees C-treated cells and further transformation of competent cells were prevented by the exposure of cells to saturating amounts of transforming DNA. Further DNase-resistant DNA binding, however, still occurred, suggesting that there were two types of receptors for DNase-resistant DNA binding to competent A. vinelandii. DNase-resistant DNA binding was dependent on magnesium ions, and at least one receptor type did not discriminate against heterologous DNA.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献