Mechanism of antigenic variation in an individual epitope on influenza virus N9 neuraminidase

Author:

Air G M1,Laver W G1,Webster R G1

Affiliation:

1. Department of Microbiology, University of Alabama, Birmingham 35294.

Abstract

Monoclonal antibodies which inhibit influenza virus neuraminidase (NA) and which therefore indirectly neutralize virus infectivity bind to epitopes located on the rim of the active-site crater. The three-dimensional structure of one of these epitopes, recognized by monoclonal antibody NC41, has previously been determined (W. R. Tulip, J. N. Varghese, R. G. Webster, G. M. Air, W. G. Laver, and P. M. Colman, Cold Spring Harbor Symp. Quant. Biol. 54:257-263, 1989). Nineteen escape mutants of influenza virus A/tern/Australia/G70c/75 (N9) NA selected with NC41 were sequenced. A surprising restriction was seen in the sequence changes involved. Ten mutants had a Ser-to-Phe change at amino acid 372, and six others had mutations at position 367. No escape mutants with changes at 369 or 370 were found, although these mutations were selected with other antibodies and rendered the epitope unrecognizable by antibody NC41. Another N9 NA, from A/ruddy turnstone/NJ/85, which differs by 14 amino acids from the tern virus NA, still bound antibody NC41. Epitope mapping by selecting multiple escape mutants with antibody NC41 thus identified only three of the five polypeptide loops on NA that contact the antibody. Escape mutants selected sequentially with three different monoclonal antibodies showed three sequence changes in two loops of the NC41 epitope. The multiple mutants were indistinguishable from wild-type virus by using polyclonal rabbit antiserum in double immunodiffusion tests, but NA inhibition titers were fourfold lower. The results suggest that although the NC41 epitope contains 22 amino acids, only a few of these are so critical to the interaction with antibody that a single sequence change allows selection of an escape mutant. In that case, the variety of amino acid sequence changes which can lead to polyclonal selection of new epidemic viruses during antigenic drift might be very limited.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3