Human herpesvirus 6 is closely related to human cytomegalovirus

Author:

Lawrence G L1,Chee M1,Craxton M A1,Gompels U A1,Honess R W1,Barrell B G1

Affiliation:

1. Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom.

Abstract

A sequence of 21,858 base pairs from the genome of human herpesvirus 6 (HHV-6) strain U1102 is presented. The sequence has a mean composition of 41% G + C, and the observed frequency of CpG dinucleotides is close to that predicted from this mononucleotide composition. The sequence contains 17 complete open reading frames (ORFs) and part of another at the 5' end of the sequence. The predicted protein products of two of these ORFs have no recognizable homologs in the genomes of other sequenced human herpesviruses (i.e., Epstein-Barr virus [EBV], human cytomegalovirus [HCMV], herpes simplex virus [HSV], and varicella-zoster virus [VZV]). However, the products of nine other ORFs are clearly homologous to a set of genes that is conserved in all other sequenced herpesviruses, including homologs of the alkaline exonuclease, the phosphotransferase, the spliced ORF, and the major capsid protein genes. Measurements of similarity between these homologous sequences showed that HHV-6 is clearly most closely related to HCMV. The degree of relatedness between HHV-6 and HCMV was commensurate with that observed in comparisons between HSV and VZV or EBV and herpesvirus saimiri and significantly greater than its relatedness to EBV, HSV, or VZV. In addition, the gene for the major capsid protein and its 5' neighbor are reoriented with respect to the spliced ORFs in the genomes of both HHV-6 and HCMV relative to the organization observed in EBV, HSV, and VZV. Three ORFs in HHV-6 have recognizable homologs only in the genome of HCMV. Despite differences in gross composition and size, we conclude that the genomes of HHV-6 and HCMV are closely related.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference61 articles.

1. DNA sequence and expression of the B95-8 Epstein-Barr virus genome;Baer R.;Nature (London),1984

2. Random cloning and sequencing by the M13/ dideoxynucleotide chain termination method;Bankier A. T.;Methods Enzymol.,1987

3. Evaluation and improvements in the automatic alignment of protein sequences;Barton G. J.;Protein Eng.,1987

4. A strategy for the rapid multiple alignment of protein sequences;Barton G. J.;J. Mol. Biol.,1987

5. Ultrastructure characterization of a new B-lymphotropic DNA virus (HBLV) isolated from patients with Iymphoproliferative disease;Biberfeld P.;JNCI,1987

Cited by 255 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3