Nonspecific phospholipase C of Listeria monocytogenes: activity on phospholipids in Triton X-100-mixed micelles and in biological membranes

Author:

Goldfine H1,Johnston N C1,Knob C1

Affiliation:

1. Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia 19104-6076.

Abstract

Listeria monocytogenes secretes a phospholipase C (PLC) which has 39% amino acid sequence identity with the broad-specificity PLC from Bacillus cereus. Recent work indicates that the L. monocytogenes enzyme plays a role during infections of mammalian cells (J.-A. Vazquez-Boland, C. Kocks, S. Dramsi, H. Ohayon, C. Geoffroy, J. Mengaud, and P. Cossart, Infect. Immun. 60:219-230, 1992). The homogeneous enzyme has a specific activity of 230 mumol/min/mg when phosphatidylcholine (PC) is dispersed in sodium deoxycholate. With phospholipid-Triton X-100 mixed micelles, the enzyme had a broad pH optimum between 5.5 and 8.0, and the rates of lipid hydrolysis were in the following order: PC > phosphatidylethanolamine (PE) > phosphatidylserine > sphingomyelin >> phosphatidylinositol (PI). Activity on PC was stimulated 35% by 0.5 M NaCl and 60% by 0.05 mM ZnSO4. When Escherichia coli phospholipids were dispersed in Triton X-100, PE and phosphatidylglycerol, but not cardiolipin, were hydrolyzed. The enzyme was active on all phospholipids of vesiculated human erythrocytes including PI, which was rapidly hydrolyzed at pH 7.0. PI was also hydrolyzed in PI-PC-cholesterol liposomes by the nonspecific PLC from L. monocytogenes and by the homologous enzyme from B. cereus. The water-soluble hydrolysis product was identified as inositol-1-phosphate. For the hydrolysis of human erythrocyte ghost phospholipids, a broad pH optimum was also observed. 32P-labelled Clostridium butyricum protoplasts, which are rich in ether lipids, were treated with PLC. The enzyme hydrolyzed the plasmalogen form of PE, its glycerol acetal, and cardiolipin, in addition to PE. I-, Cl- and F- stimulated activity on either PC- Triton X-100 mixed micelles or human erythrocyte ghosts, unlike the enzyme from B. cereus which is strongly inhibited by halides. Tris-HCl, phosphate, and calcium nitrate had similar inhibitory effects on the enzyme on the enzymes from L. monocytogenes and B. cereus.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3