Complementation analysis and regulation of CO2 fixation gene expression in a ribulose 1,5-bisphosphate carboxylase-oxygenase deletion strain of Rhodospirillum rubrum

Author:

Falcone D L1,Tabita F R1

Affiliation:

1. Department of Microbiology, Ohio State University, Columbus 43210-1192.

Abstract

A ribulose 1,5-bisphosphate carboxylase-oxygenase (RubisCO) deletion strain of Rhodospirillum rubrum that was incapable of photolithoautotrophic growth was constructed. Photoheterotrophic growth, however, was possible for the R. rubrum RubisCO deletion strain when oxidized carbon compounds such as malate were supplied. The R. rubrum RubisCO-deficient strain was not complemented to photolithoautotrophic growth by various R. rubrum DNA fragments that contain the gene encoding RubisCO, cbbM. When the R. rubrum cbbM deletion strain harbored plasmids containing R. rubrum DNA inserts with at least 2.0 kb preceding the translational start site of the cbbM gene, RubisCO activity and RubisCO antigen were detected. Lack of RubisCO expression was therefore not the cause for the failure to complement the cbbM mutant strain. Interestingly, DNA fragments encoding either of two complete Calvin-Benson-Bassham CO2- fixation (cbb) gene operons from Rhodobacter sphaeroides were able to complement the R. rubrum RubisCO deletion strain to photolithoautotrophic growth. The same R. rubrum DNA fragments that failed to complement the R. rubrum cbbM deletion strain successfully complemented the RubisCO deletion strain of R. sphaeroides, pointing to distinct differences in the regulation of metabolism and the genetics of photolithoautotrophic growth in these two organisms. A number of cbb genes were identified by nucleotide sequence analysis of the region upstream of cbbM. Included among these was an open reading frame encoding a cbbR gene showing a high degree of sequence similarity to known lysR-type CO2 fixation transcriptional activator genes. The placement and orientation of the cbbR transcriptional regulator gene in R. rubrum are unique.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference56 articles.

1. Ausubel F. M. R. Brent R. E. Kingston D. D. Moore J. D. Seidman J. A. Smith and K. Struhl (ed.). 1987. Current protocols in molecular biology. Greene Publishing Associates & Wiley Interscience New York.

2. A complementation analysis of the restriction and modification of DNA in Escherichia coli;Boyer H. W.;J. Mol. Biol.,1969

3. Ferredoxin-dependent carbon assimilation in Rhodospirillum rubrum;Buchanan B. B.;Arch. Mikrobiol.,1967

4. Identification, expression, and deduced primary structure of transketolase and other enzymes encoded within the form II CO2 fixation operon of Rhodobacter sphaeroides;Chen J.;J. Biol. Chem.,1991

5. Plasmids related to the broad host range vector, pRK290, useful for gene cloning and for monitoring gene expression;Ditta G.;Plasmid,1985

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3