Affiliation:
1. Department of Bacteriology, Faculty of Medicine, University of Tokyo, Japan.
Abstract
We had reported that a double-strand gap (ca. 300 bp long) in a duplex DNA is repaired through gene conversion copying a homologous duplex in a recB21 recC22 sbcA23 strain of Escherichia coli, as predicted on the basis of the double-strand break repair models. We have now examined various mutants for this repair capacity. (i) The recE159 mutation abolishes the reaction in the recB21C22 sbcA23 background. This result is consistent with the hypothesis that exonuclease VIII exposes a 3'-ended single strand from a double-strand break. (ii) Two recA alleles, including a complete deletion, fail to block the repair in this recBC sbcA background. (iii) Mutations in two more SOS-inducible genes, recN and recQ, do not decrease the repair. In addition, a lexA (Ind-) mutation, which blocks SOS induction, does not block the reaction. (iv) The recJ, recF, recO, and recR gene functions are nonessential in this background. (v) The RecBCD enzyme does not abolish the gap repair. We then examined genetic backgrounds other than recBC sbcA, in which the RecE pathway is not active. We failed to detect the double-strand gap repair in a rec+, a recA1, or a recB21 C22 strain, nor did we find the gap repair activity in a recD mutant or in a recB21 C22 sbcB15 sbcC201 mutant. We also failed to detect conservative repair of a simple double-strand break, which was made by restriction cleavage of an inserted linker oligonucleotide, in these backgrounds. We conclude that the RecBCD, RecBCD-, and RecF pathways cannot promote conservative double-strand break repair as the RecE and lambda Red pathways can.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Reference74 articles.
1. recD: the gene for an essential third subunit of exonuclease V;Amundsen S. K.;Proc. Natl. Acad. Sci. USA,1986
2. Bachmann B. J. 1987. Derivation and genotypes of some mutant derivatives of Escherichia coli K-12 p. 1190-1219. In F. C. Neidhardt J. L. Ingraham K. B. Low B. Magasanik M. Schaechter and H. E. Umbarger (ed.) Eschenchia coli and Salmonella typhimurium: cellular and molecular biology. American Society for Microbiology Washington D.C.
3. Identification and characterization of recD, a gene affecting plasmid maintenance and recombination in Eschenchia coli;Biek D.;J. Bacteriol.,1986
4. Behavior of X bacteriophage in a recombination-deficient strain of Eschenchia coli;Brooks K.;J. Virol.,1967
5. Clark A. J. Personal communication.
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献