The Rhizobium meliloti rhizopine mos locus is a mosaic structure facilitating its symbiotic regulation

Author:

Murphy P J1,Trenz S P1,Grzemski W1,De Bruijn F J1,Schell J1

Affiliation:

1. Department of Crop Protection, Waite Institute, University of Adelaide, Glen Osmond, Australia.

Abstract

The Rhizobium meliloti L5-30 mos locus, encoding biosynthesis of the rhizopine 3-O-methyl-scyllo-inosamine, is shown to be a mosaic structure. The mos locus consists of four open reading frames (ORFs) (ORF1 and mosABC) arranged in an operon structure. Within this locus, several domains of homology with other prokaryotic symbiotic genes (nifH, fixA, fixU, and nifT) are present, suggesting that this locus may represent a hot spot for rearrangement of symbiotic genes. Unusually, these domains are present in the coding as well as noncoding regions of the mos locus. Proteins corresponding to those encoded by mosABC, but not ORF1, have been detected in nodule extracts by using antibodies. As ORF1 shows extensive homology with the 5' region of the nifH gene (P.J. Murphy, N. Heycke, S.P. Trenz, P. Ratet, F.J. de Bruijn, and J. Schell, Proc. Natl. Acad. Sci. USA 85:9133-9137, 1988) and a frameshift mutation indicates that expression of this ORF is not required for mos activity, we propose that the mos locus has acquired a duplicated copy of nifH, including the promoter region, in order to become symbiotically regulated. Surprisingly, since the functions are likely different, MosA has an amino acid sequence similar to that of the DapA protein of Escherichia coli. The central domain of MosB has extensive homology with a range of diverse proteins involved with carbohydrate metabolism in either antibiotic or outer-cell-wall biosynthesis. This region is also common to the regulatory proteins DegT and DnrJ, suggesting a regulatory role for MosB. The structure of MosC is consistent with its being a membrane transport protein.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Health Management of Rhizospheric Microbiome;Detection, Diagnosis and Management of Soil-borne Phytopathogens;2023

2. Rhizosphere microbiome manipulation for sustainable crop production;Current Plant Biology;2021-09

3. Rhizospheric Biology;Phytomicrobiome Interactions and Sustainable Agriculture;2021-01-11

4. Rhizoengineering: A Strategy to Enhance Soil and Crop Productivity;Omics Science for Rhizosphere Biology;2021

5. Current Progress in Nitrogen Fixing Plants and Microbiome Research;Plants;2020-01-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3