A nucleoside triphosphate-regulated, 3' exonucleolytic mechanism is involved in turnover of yeast mitochondrial RNAs

Author:

Min J1,Zassenhaus H P1

Affiliation:

1. Department of Microbiology, Saint Louis University Medical School, Missouri 63104.

Abstract

We have employed cell-free transcription reactions with mitochondria isolated from Saccharomyces cerevisiae to study the mechanism of RNA turnover. The specificity of RNA turnover was preserved in these preparations, as were other RNA-processing reactions, including splicing, 3' end formation of mRNAs, and maturation of rRNAs. Turnover of nascent RNAs was found to occur exonucleolytically; endonucleolytic cleavage products were not detected during turnover of the omega intron RNA, which was studied in detail. However, these experiments still leave open the possibility that endonucleolytic cleavage products with very short half-lives are kinetic intermediates in the decay of omega RNA. Exonucleolytic turnover was regulated by nucleotide triphosphates and required their hydrolysis. A unique signature of this regulation was that any one of the eight standard ribo- or deoxyribonucleotide triphosphates supported RNA turnover. A novel hybrid selection protocol was used to determine the turnover rates of the 5', middle, and 3' portions of one mitochondrial transcript, the omega intron RNA. The results suggested that degradation along that transcript occurred with a 3'-->5' polarity. The similarity between features of mitochondrial RNA turnover and the properties of a nucleotide triphosphate-dependent 3' exoribonuclease that has been purified from yeast mitochondria suggests that this single enzyme is a key activity whose regulation is involved in the specificity of mitochondrial RNA turnover.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3