Osmotic regulation of rpoS-dependent genes in Escherichia coli

Author:

Hengge-Aronis R1,Lange R1,Henneberg N1,Fischer D1

Affiliation:

1. Department of Biology, University of Konstanz, Germany.

Abstract

The rpoS gene, which encodes a putative alternative sigma factor (sigma S), is essential for the expression of a variety of stationary-phase-induced genes as well as for stationary-phase-specific multiple-stress resistance. As previously shown for the otsA and otsB genes (R. Hengge-Aronis, W. Klein, R. Lange, M. Rimmele, and W. Boos, J. Bacteriol. 173:7918-7924, 1991), we demonstrate here that additional rpoS-controlled genes (bolA, csi-5) as well as at least 18 proteins on two-dimensional O'Farrell gels could be induced in growing cells by osmotic upshift via an rpoS-dependent mechanism. Also, rpoS-dependent thermotolerance and resistance against hydrogen peroxide could be osmotically stimulated. In contrast, the expression of glgS, while exhibiting strong stationary-phase induction, was only weakly increased by elevated osmolarity, and several rpoS-dependent proteins previously identified on two-dimensional gels were not osmotically induced. During osmotic induction of rpoS-dependent genes, rpoS transcription and the level of sigma S remained unchanged. We conclude that osmotically regulated genes represent a subfamily within the rpoS regulon that requires differential regulation in addition to that provided by sigma S.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3