Linkage of Reduced Receptor Affinity and Superinfection to Pathogenesis ofTR1.3 Murine Leukemia Virus

Author:

Murphy Samuel L.1,Chung-Landers Maeran1,Honczarenko Marek2,Gaulton Glen N.1

Affiliation:

1. Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104

2. Joint Program in Transfusion Medicine, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115

Abstract

ABSTRACT TR1.3 is a Friend murine leukemia virus (MLV) that induces selective syncytium induction (SI) of brain capillary endothelial cells (BCEC), intracerebral hemorrhage, and death. Syncytium induction by TR1.3 has been mapped to a single tryptophan-to-glycine conversion at position 102 of the envelope glycoprotein (Env102). The mechanism of SI by TR1.3 was examined here in comparison to the non-syncytium-inducing, nonpathogenic MLV FB29, which displays an identical BCEC tropism. Envelope protein expression and stability on both infected cells and viral particles were not statistically different for TR1.3 and FB29. However, affinity measurements derived using purified envelope receptor binding domain (RBD) revealed a reduction of >1 log in the K D of TR1.3 RBD relative to FB29 RBD. Whole-virus particles pseudotyped with TR1.3 Env similarly displayed a markedly reduced binding avidity compared to FB29-pseudotyped viral particles. Lastly, decreased receptor affinity of TR1.3 Env correlated with the failure to block superinfection following acute and chronic infection by TR1.3. These results definitively show that acquisition of a SI phenotype can be directly linked to amino acid changes in retroviral Env that decrease receptor affinity, thereby emphasizing the importance of events downstream of receptor binding in the cell fusion process and pathology.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3