Effects of Temperature on Gene Expression Patterns in Leptospira interrogans Serovar Lai as Assessed by Whole-Genome Microarrays

Author:

Lo Miranda1,Bulach Dieter M.12,Powell David R.2,Haake David A.34,Matsunaga James34,Paustian Michael L.5,Zuerner Richard L.5,Adler Ben126

Affiliation:

1. Australian Bacterial Pathogenesis Program

2. Department of Microbiology, Victorian Bioinformatics Consortium, Monash University, Victoria 3800, Australia

3. David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095

4. Division of Infectious Diseases, Veteran Affairs Greater Los Angeles Healthcare System, Los Angeles, California 90073

5. Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, USDA Agricultural Research Service, Ames, Iowa 50010

6. Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Victoria 3800, Australia

Abstract

ABSTRACT Leptospirosis is an important zoonosis of worldwide distribution. Humans become infected via exposure to pathogenic Leptospira spp. from infected animals or contaminated water or soil. The availability of genome sequences for Leptospira interrogans , serovars Lai and Copenhageni, has opened up opportunities to examine global transcription profiles using microarray technology. Temperature is a key environmental factor known to affect leptospiral protein expression. Leptospira spp. can grow in artificial media at a range of temperatures reflecting conditions found in the environment and the mammalian host. Therefore, transcriptional changes were compared between cultures grown at 20°C, 30°C, 37°C, and 39°C to represent ambient temperatures in the environment, growth under laboratory conditions, and temperatures in healthy and febrile hosts. Data from direct pairwise comparisons of the four temperatures were consolidated to examine transcriptional changes at two generalized biological conditions representing mammalian physiological temperatures (37°C and 39°C) versus environmental temperatures (20°C and 30°C). Additionally, cultures grown at 30°C then shifted overnight to 37°C were compared with those grown long-term at 30°C and 37°C to identify genes potentially expressed in the early stages of infection. Comparison of data sets from physiological versus environmental experiments with upshift experiments provided novel insights into possible transcriptional changes at different stages of infection. Changes included differential expression of chemotaxis and motility genes, signal transduction systems, and genes encoding proteins involved in alteration of the outer membrane. These findings indicate that temperature is an important factor regulating expression of proteins that facilitate invasion and establishment of disease.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3