Evaluation of Polymorphic Locus Sequence Typing for Candida glabrata Epidemiology

Author:

Katiyar Santosh1,Shiffrin Eric1,Shelton Celeste1,Healey Kelley1,Vermitsky John-Paul1,Edlind Tom2

Affiliation:

1. Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA

2. MicrobiType LLC, Plymouth Meeting, Pennsylvania, USA

Abstract

ABSTRACT The opportunistic yeast Candida glabrata is increasingly refractory to antifungal treatment or prophylaxis and relatedly is increasingly implicated in health care-associated infections. To elucidate the epidemiology of these infections, strain typing is required. Sequence-based typing provides multiple advantages over length-based methods, such as pulsed-field gel electrophoresis (PFGE); however, conventional multilocus sequence typing (targeting 6 conserved loci) and whole-genome sequencing are impractical for routine use. A commercial sequence-based typing service for C. glabrata that targets polymorphic tandem repeat-containing loci has recently been developed. These CgMT-J and CgMT-M services were evaluated with 56 epidemiologically unrelated isolates, 4 to 7 fluconazole-susceptible or fluconazole-resistant isolates from each of 5 center A patients, 5 matched pairs of fluconazole-susceptible/resistant isolates from center B patients, and 7 isolates from a center C patient who responded to then failed caspofungin therapy. CgMT-J and CgMT-M generated congruent results, resolving isolates into 24 and 20 alleles, respectively. Isolates from all but one of the center A patients shared the same otherwise rare alleles, suggesting nosocomial transmission. Unexpectedly, Pdr1 sequencing showed that resistance arose independently in each patient. Similarly, most isolates from center B also clustered together; however, this may reflect a dominant clone since their alleles were shared by multiple unrelated isolates. Although distinguishable by their echinocandin susceptibilities, all isolates from the center C patient shared alleles, in agreement with the previously reported relatedness of these isolates based on PFGE. Finally, we show how phylogenetic clusters can be used to provide surrogate parents to analyze the mutational basis for antifungal resistance.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3