Phosphate-Dependent Behavior of the Archaeon Halobacterium salinarum Strain R1

Author:

Wende Andy1,Furtwängler Katarina1,Oesterhelt Dieter1

Affiliation:

1. Department of Membrane Biochemistry, Max-Planck-Institute of Biochemistry, Martinsried, Germany

Abstract

ABSTRACT Phosphate is essential for life on earth, since it is an integral part of important biomolecules. The mechanisms applied by bacteria and eukarya to combat phosphate limitation are fairly well understood. However, it is not known how archaea sense phosphate limitation or which genes are regulated upon limitation. We conducted a microarray analysis to explore the phosphate-dependent gene expression of Halobacterium salinarum strain R1. We identified a set of 17 genes whose transcript levels increased up to several hundredfold upon phosphate limitation. Analysis of deletion mutants showed that this set of genes, the PHO stimulon, is very likely independent of signaling via two-component systems. Our experiments further indicate that PHO stimulon induction might be dependent on the intracellular phosphate concentration, which turned out to be subject to substantial changes. Finally, the study revealed that H. salinarum exhibits a phosphate-directed chemotaxis, which is induced by phosphate starvation.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3