Effects of adhesins from mannose-resistant Escherichia coli on mediator release from human lymphocytes, monocytes, and basophils and from polymorphonuclear granulocytes

Author:

Ventur Y1,Scheffer J1,Hacker J1,Goebel W1,König W1

Affiliation:

1. Lehrstuhl für Medizinische Mikrobiologie und Immunologie, Arbeitsgruppe für Infektabwehrmechanismen, Ruhr-Universität Bochum, Federal Republic of Germany.

Abstract

We investigated the role of Escherichia coli expressing mannose-resistant hemagglutination and adhesins with regard to the induction of leukotrienes from a suspension of human lymphocytes, monocytes, and basophils (LMBs) compared with human polymorphonuclear granulocytes (PMNs). Genetically cloned E. coli strains expressing various types of mannose-resistant hemagglutination (MRH+) were phagocytosed to a higher degree by monocytes than the nonadherent E. coli strain. The various strains differed in their capacity to induce a chemiluminescence response, which showed the same pattern for LMBs and PMNs. Stimulation of LMBs with bacteria alone, unlike granulocytes, did not activate the cells for the release of leukotrienes. However, preincubation of LMBs with bacteria decreased subsequent leukotriene formation when the cells were stimulated with calcium ionophore. The inhibitory effect was dependent on the concentration of bacteria used for preincubation as well as on the preincubation temperature. The various bacterial strains differed in inhibitory potency for mediator release. Preincubation of LMBs with zymosan, opsonized zymosan, the bacterial peptide FMLP, and peptidoglycan had no inhibitory effect or even increased subsequent leukotriene formation. Opsonized bacteria were far less inhibitory than nonopsonized bacteria. In contrast to human LMBs, preincubation of human PMNs with mannose-resistant bacteria led to increased leukotriene B4 generation and reduced w-oxidation of leukotriene B4. Our data suggest that phagocytes (neutrophils, monocytes) respond in a different way for leukotriene formation after interaction with mannose-resistant E. coli.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3