Affiliation:
1. Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
2. Centre for Immunology and Infectious Disease, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
Abstract
ABSTRACT
Porphyromonas gingivalis
synthesizes two lipopolysaccharides (LPSs), O-LPS and A-LPS. The structure of the core oligosaccharide (OS) of O-LPS and the attachment site of the O-polysaccharide (O-PS) repeating unit [→3)-α-
d
-Gal
p
-(1→6)-α-
d
-Glc
p
-(1→4)-α-
l
-Rha
p
-(1→3)-β-
d
-GalNAc
p
-(1→] to the core have been elucidated using the ΔPG1051 (WaaL, O-antigen ligase) and ΔPG1142 (Wzy, O-antigen polymerase) mutant strains, respectively. The core OS occurs as an “uncapped” glycoform devoid of O-PS and a “capped” glycoform that contains the attachment site of O-PS via β-
d
-GalNAc at position O-3 of the terminal α-(1→3)-linked mannose (Man) residue. In this study, the attachment site of A-PS to the core OS was determined based on structural analysis of SR-type LPS (O-LPS and A-LPS) isolated from a
P. gingivalis
ΔPG1142 mutant strain by extraction with aqueous hot phenol to minimize the destruction of A-LPS. Application of one- and two-dimensional nuclear magnetic resonance (NMR) spectroscopy in combination with methylation analysis showed that the A-PS repeating unit is linked to a nonterminal α-(1→3)-linked Man of the “capped core” glycoform of outer core OS at position O-4 via a →6)-[α-
d
-Man-α-(1→2)-α-
d
-Man-1-phosphate→2]-α-
d
-Man-(1→ motif. In order to verify that O-PS and A-PS are attached to almost identical core glycoforms, we identified a putative α-mannosyltransferase (PG0129) in
P. gingivalis
W50 that may be involved in the formation of core OS. Inactivation of PG0129 led to the synthesis of deep-R-type LPS with a truncated core that lacks α-(1→3)-linked mannoses and is devoid of either O-PS or A-PS. This indicated that PG0129 is an α-1,3-mannosyltransferase required for synthesis of the outer core regions of both O-LPS and A-LPS in
P. gingivalis
.
IMPORTANCE
Porphyromonas gingivalis
, a Gram-negative anaerobe, is considered to be an important etiologic agent in periodontal disease, and among the virulence factors produced by the organism are two lipopolysaccharides (LPSs), O-LPS and A-LPS. The structures of the O-PS and A-PS repeating units, the core oligosaccharide (OS), and the linkage of the O-PS repeating unit to the core OS in O-LPS have been elucidated by our group. It is important to establish whether the attachment site of the A-PS repeating unit to the core OS in A-LPS is similar to or differs from that of the O-PS repeating unit in O-LPS. As part of understanding the biosynthetic pathway of the two LPSs in
P. gingivalis
, PG0129 was identified as an α-mannosyltransferase that is involved in the synthesis of the outer core regions of both O-LPS and A-LPS.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献