Functional Survey for Heterologous Sugar Transport Proteins, Using Saccharomyces cerevisiae as a Host

Author:

Young Eric1,Poucher Ashley1,Comer Austin1,Bailey Alexandra1,Alper Hal1

Affiliation:

1. Department of Chemical Engineering, The University of Texas at Austin, 1 University Station, C0400, Austin, Texas 78712

Abstract

ABSTRACT Molecular transport is a key process in cellular metabolism. This step is often limiting when using a nonnative carbon source, as exemplified by xylose catabolism in Saccharomyces cerevisiae . As a step toward addressing this limitation, this study seeks to characterize monosaccharide transport preference and efficiency. A group of 26 known and putative monosaccharide transport proteins was expressed in a recombinant Saccharomyces cerevisiae host unable to transport several monosaccharides. A growth-based assay was used to detect transport capacity across six different carbon sources (glucose, xylose, galactose, fructose, mannose, and ribose). A mixed glucose-and-xylose cofermentation was performed to determine substrate preference. These experiments identified 10 transporter proteins that function as transporters of one or more of these sugars. Most of these proteins exhibited broad substrate ranges, and glucose was preferred in all cases. The broadest transporters confer the highest growth rates and strongly prefer glucose. This study reports the first molecular characterization of the annotated XUT genes of Scheffersomyces stipitis and open reading frames from the yeasts Yarrowia lipolytica and Debaryomyces hansenii. Finally, a phylogenetic analysis demonstrates that transporter function clusters into three distinct groups. One particular group comprised of D. hansenii XylHP and S. stipitis XUT1 and XUT3 demonstrated moderate transport efficiency and higher xylose preferences.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3