A double-strand break within a yeast artificial chromosome (YAC) containing human DNA can result in YAC loss, deletion or cell lethality

Author:

Bennett C B1,Westmoreland T J1,Snipe J R1,Resnick M A1

Affiliation:

1. Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA.

Abstract

Human chromosomal DNA contains many repeats which might provide opportunities for DNA repair. We have examined the consequences of a single double-strand break (DSB) within a 360-kb dispensable yeast artificial chromosome (YAC) containing human DNA (YAC12). An Alu-URA3-YZ sequence was targeted to several Alu sites within the YAC in strains of the yeast Saccharomyces cerevisiae; the strains contained a galactose-inducible HO endonuclease that cut the YAC at the YZ site. The presence of a DSB in most YACs led to deletion of the URA3 cassette, with retention of the telomeric markers, through recombination between surrounding Alus. For two YACs, the DSBs were not repaired and there was a G2 delay associated with the persistent DSBs. The presence of persistent DSBs resulted in cell death even though the YACs were dispensable. Among the survivors of the persistent DSBs, most had lost the YAC. By a pullback procedure, cell death was observed to begin at least 6 h after induction of a break. For YACs in which the DSB was rapidly repaired, the breaks did not cause cell cycle delay or lead to cell death. These results are consistent with our previous conclusion that a persistent DSB in a plasmid (YZ-CEN) also caused lethality (C. B. Bennett, A. L. Lewis, K. K. Baldwin, and M. A. Resnick, Proc. Natl. Acad. Sci. USA 90:5613-5617, 1993). However, a break in the YZ-CEN plasmid did not induce lethality in the strain (CBY) background used in the present study. The differences in survival levels appear to be due to the rapid degradation of the plasmid in the CBY strain. We, therefore, propose that for a DSB to cause cell cycle delay and death by means other than the loss of essential genetic material, it must remain unrepaired and be long-lived.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3