Essential and nonessential histone H2A variants in Tetrahymena thermophila

Author:

Liu X1,Li B1,GorovskyMA 1

Affiliation:

1. Department of Biology, University of Rochester, New York 14627, USA.

Abstract

Although variants have been identified for every class of histone, their functions remain unknown. We have been studying the histone H2A variant hv1 in the ciliated protozoan Tetrahymena thermophila. Sequence analysis indicates that hv1 belongs to the H2A.F/Z type of histone variants. On the basis of the high degree of evolutionary conservation of this class of histones, they are proposed to have one or more distinct and essential functions that cannot be performed by their major H2A counterparts. Considerable evidence supports the hypothesis that the hv1 protein in T. thermophila and hv1-like proteins in other eukaryotes are associated with active chromatin. In T. thermophila, simple mass transformation and gene replacement techniques have recently become available. In this report, we demonstrate that either the HTA1 gene or the HTA2 gene, encoding the major H2As, can be completely replaced by disrupted genes in the polyploid, transcriptionally active macronucleus, indicating that neither of the two genes is essential. However, only some of the HTA3 genes encoding hv1 can be replaced by disrupted genes, indicating that the H2A.F/Z type variants have an essential function that cannot be performed by the major H2A genes. Thus, an essential gene in T. thermophila can be defined by the fact that it can be partially, but not completely, eliminated from the polyploid macronucleus. To our knowledge, this study represents the first use of gene disruption technology to study core histone gene function in any organism other than yeast and the first demonstration of an essential gene in T. thermophila using these methods. When a rescuing plasmid carrying a wild-type HTA3 gene was introduced into the T. thermophila cells, the endogenous chromosomal HTA3 could be completely replaced, defining a gene replacement strategy that can be used to analyze the function of essential genes.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Reference40 articles.

1. Histone variants specific to the transcriptionally active, amitotically dividing macronucleus of the unicellular eukaryote, Tetrahymena thermophila;Allis C. D.;Cell,1980

2. hv1 is an evolutionarily conserved H2A variant that is preferentially associated with active genes;Allis C. D.;J. Biol. Chem.,1986

3. A conserved histone variant enriched in nucleoli of mammalian cells;Allis C. D.;Cell,1982

4. Ausubel F. M. R. Brent R. E. Kingston D. D. Moore J. G. Seidman J. A. Smith and K. Struhl. 1988. Current protocols in molecular biology. Wiley Interscience New York.

5. Amino acid sequence of the N-terminal domain of calf thymus histone H2A.Z;Ball D. L. J.;FEBS Lett.,1983

Cited by 90 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3