Comparative genomics of the niche-specific plant pathogen Streptomyces ipomoeae reveal novel genome content and organization

Author:

Soares Natasha R.1,Huguet-Tapia José C.2,Guan Dongli1,Clark Christopher A.3,Yang Kuei-Ting1,Kluchka Olivia R.1,Thombal Raju S.4,Kartika Rendy4,Badger Jonathan H.5,Pettis Gregg S.13ORCID

Affiliation:

1. Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA

2. Department of Plant Pathology, University of Florida, Gainesville, Florida, USA

3. Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, USA

4. Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana, USA

5. Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA

Abstract

ABSTRACT The sweet potato soil rot pathogen Streptomyces ipomoeae differs in disease pathology, host range, and virulence factor production from Streptomyces species that cause scab diseases on potato and other plant hosts. Nevertheless, previous phylogenomic analysis suggested S. ipomoeae and the oldest scab species, Streptomyces scabiei , are derived from a common ancestor. While genomes of scab pathogens have been described in some detail, similar knowledge of S. ipomoeae has been lacking. Here, we performed comparative genomic analyses involving both virulent and avirulent strains of S. ipomoeae, along with other plant-pathogenic and saprophytic Streptomyces spp. The txt gene cluster for the phytotoxin thaxtomin C was found in all virulent strains of S. ipomoeae , but, contrary to scab species, the thaxtomin locus does not appear to reside within a genomic island and has diverged from its scab pathogen counterparts. Increased TTA rare codon usage appears to be a hallmark of S. ipomoeae , and in particular, for its txt locus. The txtR activator gene, which we show here is essential for pathogenicity, appears to be subject to exceptional bldA translational control. Ortholog group searches identified genes found only in virulent S. ipomoeae strains in our analysis, and genome mining revealed secondary metabolite gene clusters of S. ipomoeae , which are not shared with scab species. Overall, we have identified novel aspects of genome organization and gene content consistent with niche development by S. ipomoeae , and the results here will facilitate the elucidation of the mechanisms governing its virulence and ecology. IMPORTANCE While most plant-pathogenic Streptomyces species cause scab disease on a variety of plant hosts, Streptomyces ipomoeae is the sole causative agent of soil rot disease of sweet potato and closely related plant species. Here, genome sequencing of virulent and avirulent S. ipomoeae strains coupled with comparative genomic analyses has identified genome content and organization features unique to this streptomycete plant pathogen. The results here will enable future research into the mechanisms used by S. ipomoeae to cause disease and to persist in its niche environment.

Funder

U.S. Department of Agriculture

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3